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 WORK, ENERGY, AND POWER 

EXERCISES 

Section 6.1 Work 

 11. INTERPRET This problem involves the concept of work. You are doing work on the shopping cart by pushing it 

around. 

DEVELOP Assume the force is constant and is applied in the horizontal direction, in which case this is a one-

dimensional problem and Equation 6.1 applies.  

EVALUATE Inserting the given quantities into Equation 6.1 gives the work done as 

( ) ( )W 75 N 12 m 900 JF x= Δ = =  

ASSESS If it takes you 30 seconds to cover this distance, the power expended would be 

( ) ( )900 J 30 s 30 WP W t= Δ = = . This gives you some appreciation for the energy needed to power a 60-W 

light bulb. 

 12. INTERPRET This problem involves work and forces due to friction (see Chapter 5). The relevant physical 

quantity here is the work done by the person on the box. 

DEVELOP Draw a free-body diagram for the box (see figure below). Because the box moves at a constant speed, 

we know from Newton’s second law Fnet= ma that the net force is constant at zero, so the force applied appF  must 

be constant. Being a one-dimensional problem, we can apply Equation 6.1. From the free-body diagram, we see 

that app kF f= , and n mg= . From Equation 5.3 k kf nμ= , we find that the force applied must be app kF mgμ= . 

Insert this into Equation 6.1 to find the work done. 
n
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r
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EVALUATE The work done by pushing the box a distance Δx = 4.8 m is 

( ) ( ) ( ) ( )2
app k 0.21 50 kg 9.8 m/s 4.8 m 490 JW F x mg xμ= Δ = Δ = =  

to two significant figures. 

ASSESS The units are correct, 21 J 1 N m 1 kg m/s m= ⋅ = ⋅ ⋅ . If the floor were frictionless ( k 0μ = ), then the work 

done would be zero, as expected. 

 13. INTERPRET The problem involves work, which is done by the crane on the beam. We are to find the work done 

to lift the box vertically 23 m. 

DEVELOP From the definition of work as the scalar product of force and distance (see Equation 6.3), we see that 

no work is done when the force applied is perpendicular to the displacement. This is the case for the crane when it 

swings the beam eastward by 18 m. The crane applies a vertical force (to counter gravity) and the displacement is 

horizontal (eastward). Thus, we need only concern ourselves with the vertical displacement of the beam. 

Furthermore, if the beam moves with constant speed, we know that the vertical force applied must be constant and 
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be equal to the weight of the box (Fapp = mg, see previous problem). Thus, we can apply Equation 6.1 to the vertical 

displacement to find the work done.  

EVALUATE Inserting the given quantities into Equation 6.1 gives the work done: 

( ) ( ) ( )2
app 650 kg 9.8 m/s 23 m 150 k JW F y mg y= Δ = Δ = =  

to two significant figures. 

ASSESS We could have used the more general Equation 6.5 to find the work. This gives  

( ) ( )app app
ˆ ˆ ˆ18 m 23 m 23 m 150 k JW F r F j i j F= ⋅ Δ = ⋅ + = =  

which agrees with our previous result. 

 14. INTERPRET This problem is about the work done by gravity (i.e., by the Earth) on the water that passess over the 

lip of Cherun-Meru. Thus, it is a one-dimensional problem involving work done by a constant force.  

DEVELOP Since the density of water is 1000 kg/m3, the mass of a cubic meter of water is 1000 kg, and the force 

of gravity at the Earth’s surface on a cubic meter of water is constant at 

( ) ( )21000 kg 9.8 m/s 9800 NgF mg= = =  

vertically downward. We can then use Equation 6.1, W = FΔx, to find the work done. 

EVALUATE  The work done by gravity on the water is 

( ) ( ) 69800 N 980 m 9.6 10  JgW F y= Δ = = ×  

ASSESS The units are correct; 1 J = 1 N·m. The greater the distance the water falls, the larger the amount of work 

done by gravity. Would the work be different if the water followed a different path from the top of the falls to the 

bottom? 

 15. INTERPRET This problem involves the average force exerted by the meteorite on the Earth. It is a one-

dimensional problem because all forces and displacements are in the same direction (i.e., vertical). 

DEVELOP Because we are interested in the average force, which is constant during the meteorite’s deceleration 

period, we can use Equation 6.1 W = FΔx to find the average force. We are given the W = 140 MJ and Dx = 75 cm 

= 0.75 m. 

EVALUATE Solving Equation 6.1 for the force and inserting the given quantities gives an average force of 

140 MJ 190 MN
0.75 m

W F x
WF
x

= Δ

= = =
Δ

 

to two significant figures. 

ASSESS Notice that we did not need to convert from MJ to J, we simply retained the prefactor M (= 106) in our 

calculation. Thus, the units of MN are units of force. Using the fact that dynamite carries 7.5 MJ/kg of explosive 

energy, this meteorite impact delivered the equivalent of (140 MJ)/(7.5 MJ/kg) ≈ 19 kg of dynamite (about 41 lbs).  

 16. INTERPRET This problem is about the work done by the elevator cable on the elevator as it accelerates upward. It 

is a one dimensional problem and also involves Newton’s second law. We are asked to find an expression for the 

work done to lift the elevator the given height. 

DEVELOP Applying Newton’s second law to the elevator gives  

( )y yT mg ma T m g a− = ⇒ = +  

where T is the cable tension force and ay = 0.1g is the upward acceleration of the elevator. Because the elevator is 

displaced parallel to the force, we can insert this result for the tension force into Equation 6.1, W = FΔy, to find an 

expression for the work done by the cable. 

EVALUATE The work done by the cable on the elevator is 

( ) ( )0.1

1.1
yW T y m g a y m g g h

T mgh

= Δ = + Δ = +

=
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ASSESS The units are correct, 1 J = 1 N·m. The greater the upward acceleration ay, the more work must be done 

by the cable. Of course, if the elevator undergoes free fall, ay = –g and the tension in the cable is zero, so no work 

is done on the elevator. 

 17. INTERPRET  This problem is an exercise in vector properties. We are asked to show that the scalar product (or 

dot product) of two vectors is distributive. 

DEVELOP Use the definition of the scalar product (Equation 6.4) to demonstrate the distributive property of the 

vector scalar product. 

EVALUATE Using the definition of the vector scalar product, we see that  

( ) ( ) ( ) ( )x x x y y y z z z

x x y y z z x x y y z z

A B C A B C A B C A B C

A B A B A B A C A C A C

A B A C

= + + + + +

= + + + + +

= ⋅

⋅ +

⋅ +

 

ASSESS We could also use Equation 6.3 to demonstrate the distributive property. This gives 

( ) ( ) ( )cos cosAB ACA B C AB AC A B A Cθ θ⋅ + = + = ⋅ + ⋅  

 18. INTERPRET This problem involves finding the work done by a force moving an object through a given 

displacement. 

DEVELOP Because this is a two dimensional problem, we will use Equation 6.5, W F r= ⋅ Δ , to find the work. 

We are given that ˆ ˆ1.8 2.2 NF i j= +  and ( ) ( )2 1
ˆ ˆ ˆ ˆ ˆ ˆ56 31 m 0 0 m 56 31 mr r r i j i j i jΔ = − = + − + = + . 

EVALUATE Inserting the given quantities into Equation 6.5, we find that the work done is 

( ) ( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ ˆ1.8 2.2 N 56 31 m 1.8 N 56 m 2.2 N 31 m 170 JW i j i j= + ⋅ + = + =  

to two significant figures. 

ASSESS We find that the units of the scalar product come out to N·m, just as when we multiply scalars quantities. 

 19. INTERPRET This problem involves the concept of work. We are asked to find the distance a stalled car can be 

moved by a given amount of work. 

DEVELOP Because the force is directed at 17° to the car’s displacement vector, we must use Equation 6.2, W = 

Fcos(θ)Δr.  

EVALUATE Solving Equation 6.2 for Dr, and inserting the given quantitites, we find that the distance the car is 

moved is 

( ) ( )
860 J 1.9 m

cos 470 N cos 17
Wr

F θ
Δ = = =

°
 

ASSESS Only the horizontal component of the force, cosxF F θ= , does the work. The vertical part of the force 

simply modifies the normal force experienced by the car. 

Section 6.2 Forces that Vary 

 20. INTERPRET This problem involves calculating the work done by a varying force to cover two distances. This is a 

one-dimensional problem.  

DEVELOP We will apply Equation 6.8, 

( )
2

1

x

x

W F x dx= ∫  

to find the work done. The force is ( ) ( ) ( )2
0kF x x n ax mgμ μ= = + , and we are to find the work done from x1 = 0 

km to x2 = 3 km and from x1 = 3 km to x2 = 4 km. 

EVALUATE (a) Inserting F(x) into the integral and evaluating it from x1 = 0 km to x2 = 3 km gives 
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( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

22

1 1

2 3
0 0

2
3 33 3 2

0 2 1 2 1

1
3

0.0062 m180 kg 9.8 m/s 0.17 3 m 0 m 3 m 0 m
3 3

1900 J

xx

x x

W mg ax dx mg x ax

amg x x x x

μ μ

μ
−

⎛ ⎞= + = +⎜ ⎟⎝ ⎠

⎧ ⎫⎡ ⎤ ⎡ ⎤= − + − = − + −⎨ ⎬⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎩ ⎭
=

∫

 

to two significant figures. 

(b) Repeating the exercise for x1 = 3 km to x2 = 4 km gives 

( ) ( ) ( ) ( ) ( ) ( )
2

3 32 0.0062 m180 kg 9.8 m/s 0.17 4 m 3 m 4 m 3 m
3

1600 J

W
−⎧ ⎫⎡ ⎤= − + −⎨ ⎬⎣ ⎦⎩ ⎭

=
 

to two significant figures. 
ASSESS Notice that the constant has dimensions of m–2, so that the units work out to be N·m = J.  

 21. INTERPRET This problem involves the work done to stretch a spring from equilibrium to a given distance, and 

from that distance to a further distance. 

DEVELOP The problem can be solved by using Equation 6.8, from which Equation 6.10 is derived. [Notice that 

Equation 6.10 applies to the special case where one of the endpoints is the equilibrium position of the spring, 

which is not the case for part (b) of the problem.] The force applied to the spring is F(x) = kx, so Equation 6.8 gives 

( ) ( ) ( )
2 2

1 1

2 2
1 22

x x

x x

kW F x dx kx dx x x= = − = −∫ ∫  

where x1 and x2 are the initial and final displacements from equilibrium, respectively. 

EVALUATE (a) The amount of work done in stretching from x1 = 0 m to x2 = 0.1 m is 

( ) ( )2 2200 N/m 0.1 m 0 m 1 J
2

W ⎡ ⎤= − =⎣ ⎦  

(b) Similarly, to stretch from x1 = 0.1 m to x2 = 0.2 m from equilibrium requires 

( ) ( )2 2200 N/m 0.2 m 0.1 m 3 J
2

W ⎡ ⎤= − =⎣ ⎦  

ASSESS  Another way to solve part (b) is to note that the work to stretch the spring from 0 to 20 cm is four times 

the work from part (a), or 4.0 J, so the work in part (b) is 4.0 J 1.0 J 3.0 J.− =  

 22. INTERPRET We must find the work necessary to compress a spring a given distance, given the spring constant. 

We will use the most general equation for work in one dimension. 

DEVELOP The general equation for work in one dimension is 2

1

x
xW F dx= ∫ ⋅ . By Newton’s third law, the force 

applied by the mechanic is equal and opposite to the spring force, F kx= − , so we can substitute F kx=  into the 
equation for W. The initial displacement with respect to the equilibrium position is x1 = 0 m and the final 
displacement is x2 = 0.45 m – 0.32 m = 0.13 m. 
EVALUATE Inserting the given quantities into the expression for work gives 

( ) ( ) ( ) ( )2 2

1 1

23
2 2
2 1

3.8 10  N/m 0.13 m
32 J

2 2

x x

x x

kW F x dx kxdx x x
×

= ⋅ = = − = =∫ ∫  

ASSESS Note that we don’t use the initial and final lengths of the spring! The x in the spring force equation is the 

displacement from the equilibrium position, which in this case is 45 cm – 32 cm = 13 cm. 

 23. INTERPRET The problem is about work done to stretch a spring. We want to find out how much the spring can be 

stretched with a given amount of work. 

DEVELOP Because the spring is stretched starting from its equilibrium position, the result of Equation 6.10, 
2 2W kx=  can be applied. In this expression, x represents the distance from equilibrium that the spring is 

stretched (or compressed). 
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EVALUATE Solve Equation 6.10 for x and insert the given quantities. This gives 

( )2 8.5 J2 0.299 m 30 cm
190 N/m

Wx
k

= ± = = =  

to two significant figures. We have chosen the positive square root to reflect the fact that the spring is stretched, 

not compressed. 

ASSESS Notice that x is inversely proportional to .k  This means that the stiffer the spring (greater k), the less it 

will be stretched, and vice versa. Also note that the work needed to stretch a spring an amount x is the same as is 

needed to compress it by this same amount. 

 24. INTERPRET We're asked how much work does a fly impart on a spider silk strand, assuming the strand acts like a 

simple spring.  

DEVELOP As calculated for Equation 6.10, the work done on a spring when stretching it is: 1 2
2 .W kx=  

EVALUATE Using the spring constant of the strand and the distance it stretches when a fly hits it, the work done is 

 ( ) ( )21 12
2 2 70 mN/m 0.096 m 0.32 mJW kx= = =  

ASSESS When the fly hits the strand, it transfers some significant fraction of its kinetic energy into the work used 
to stretch the strand. We can estimate the fly's kinetic energy before the impact. Let's assume the fly has a mass of 

roughly 1 g and that its speed is around 1 m/s. Then, its kinetic energy ( )1 2
2K mv=  is 0.5 mJ. So the work we 

calculated above seems reasonable.  

Section 6.3 Kinetic Energy 

 25. INTERPRET This problem involves kinetic energy. The object of interest is the airplane, and we are to find its 

kinetic energy given its mass and velocity.  

DEVELOP This a straight-forward application of Equation 6.13, K = mv2/2, where K is the kinetic energy, m = 2.4 

× 105 kg is the mass, and v = 900 km/h is the speed. 

EVALUATE The kinetic energy of the airplane is thus 

( ) ( )2 2 25 3
2 9

2.4 10 kg 900 km/h1 10 m h 7.5 10 J 7.5 G J
2 2 km 3600 s

K mv
× ⎛ ⎞ ⎛ ⎞

= = = × =⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
 

ASSESS The units work out to be 

kg km⋅
2 2m h⋅ ⋅

2

h
2

km⋅
2 2

N m J
s

= ⋅ =
⋅

 

as expected. 

 26. INTERPRET How much work is done in accelerating a particle from rest to some final speed? We use the work-

energy theorem.  

DEVELOP The relationship between work and kinetic energy is W K= Δ (Equation 6.14). 21
2 ,K mv≡  so we can 

use the mass of a proton ( 271.67 10 kg−×  from the physical constants table on the front inside cover) and the given 

final velocity ( 721 Mm/s 2.1 10 m/s= × ) to find the change in K and thus the work. 

  EVALUATE Using the fact that the initial velocity is zero, the work is 

 2 2 2 27 7 2 131 1 1 1
f i f2 2 2 2 (1.67 10 kg)(2.1 10 m/s) 3.7 10 JW mv mv mv − −= − = = × × = ×  

  ASSESS In particle physics problems such as this one, energies are often given in the more conveniently sized unit 

of electron volts. 191 eV 1.6 10  J,−= ×  so the amount of work done in this case is 2.3 MeV. 

 27. INTERPRET This problem involves kinetic energy. We are to find the speed at which the small car must travel so 

that it has the same kinetic energy as the large truck.  

DEVELOP We will use Equation 6.13, K =mv2/2, to find the kinetic energy of each vehicle. By setting their 

kinetic energies equal, we can solve for the speed of the car.  
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EVALUATE Let the car’s variables carry the subscript c, and the truck’s variables carry the subscript T. The 

kinetic energy of each is Kc = mcvc

2/2 for the car and KT = mTvT

2/2 for the truck. Setting these equal and solving for 

vc gives 

( )

2 2

4

1 1
2 2

3.2 10 kg20 km/h 120 km/h
950 kg

c c T T

T
c

c

m v m v

m
v v

m

=

×= ± = ± = ±
 

ASSESS The plus/minus sign indicates that the car can either travel in the same direction as the truck, or in the 

opposite direction. Notice that we did not need to convert km/h to m/s for this problem, because the units of kg 

under the radical cancel.  

 28. INTERPRET The object of interest is the skateboarder. We are asked to find the total (i.e., net) work done on the 

skateboarder between the top and bottom of the hill. 

DEVELOP The work-energy theorem states that the net work done on an object equates to its change in kinetic 

energy, which we can calculate for the skateboarder from the information given. The relevant equations here are 

Equations 6.12 K = mv2/2 that gives the kinetic energy and Equation 6.14 (work-energy theorem), ΔK = Wnet, which 

relates the net work done to the change in kinetic energy. Given the initial velocity 1v and the final velocity 2 ,v the 

net work done on the skateboarder can be calculated. 

EVALUATE From the work-energy theorem we find the net work done by gravity (i.e., the Earth) on the 

skateboarder is 

( ) ( ) ( ) ( )2 22 2
net 2 1

1 1 60 kg 10 m/s 5.0 m/s 2.3 kJ
2 2

W K m v v ⎡ ⎤= Δ = − = − =⎣ ⎦  

ASSESS The work-energy theorem states that the change in kinetic energy of an object is equal to the net work 

done on the object. Therefore, the greater the difference in kinetic energy, ΔK, the more the work required. 

 29. INTERPRET This problem involves work and the work-energy theorem. Given a force acting on an object and the 

distance over which the force acts, we are asked to find the initial velocity of the object. 

DEVELOP The work-energy theorem, Equation 6.14 (Wnet = ΔK) tells us that the net work done on the straw is its 

change in kinetic energy, which involves the straw’s initial speed. Because the stopping force acts in the same 

direction as the straw’s displacement in the tree (i.e., it’s a one-dimensional problem), and assuming the stopping 

force is constant, we can use Equation 6.1, W = FxΔx to find the net work done on the straw by the tree. Because 

the force of the tree acts to oppose the displacement of the straw, the work is negative : W = –Fxx, where x = 4.5 

cm. Equating this to the change in kinetic energy by the work-energy theorem allows us to find the initial velocity 

of the straw. 

EVALUATE Equating the work done by the tree to the change in the straw’s kinetic energy, then solving for the 

initial speed of the straw gives 

( ) ( )

0

2 2
net 2 1

1 3

2

2 70 N 0.0452 110 m/s
0.5 10 kg

mW Fx v v

Fxv
m

=

−

⎛ ⎞
= − = −⎜ ⎟⎜ ⎟⎝ ⎠

= ± = =
×

 

to two significant figures. Because the plus/minus sign simply indicates an initial velocity to the left or to the right, 

we have arbitrarily chosen the positive sign. 

ASSESS This speed is reasonable for tornados, which usually have wind speeds between 18 and 140 m/s. 

 30. INTERPRET The object of interest in this problem is the car, and we are asked to find the height from which to 

drop the car so that it has the same energy upon impact as for a 20 mi/h collision with a stationary object. This 

problem involves work, kinetic energy, and the work-energy theorem. 
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DEVELOP The force acting on the car as it falls is the force due to gravity, F = mg. Because the car’s displacement 

is in the same direction (i.e., downward) as the force, we can use Equation 6.1 to find the work done by gravity on 

the car as a function of the height y from which we drop the car: W = Fy. From the work-energy theorem Wnet = ΔK 

(Equation 6.14), we can equate this work to the work done on the car in going from 20 mi/h to 0 mi/h in a collision 

and solve for the height y. Converting mi/h to m/s with the aid of Appendix C, we find that 

( ) ( ) ( )20 mi/h 1609 m mi 1 h 3600 s 8.94 m/s= . 

EVALUATE By the work-energy theorem, we have 

( )

( ) ( ) ( )
( )

2 2
net 2 1

2 2
2 2
2 1 2

2
0 m/s 8.94 m/s

4.1 m
2 2 9.8 m/s

mW Fy v v

my v v
mg

= = −

−
= − = = −

 

ASSESS The net work done by the stopping force on the car is negative because it acts to oppose the car’s 

displacement, so F(x2 – x1) < 0, so it reduces the car’s kinetic energy instead of increasing it. 

Section 6.4 Power 

 31. INTERPRET This problem is an exercise in converting power from kcal/day to Watts. 

DEVELOP From Appendix C, we find that 1 cal = 4.184 J, and we know that 1 day = (24 h)(3600 s/h) = 86,400 s. 

EVALUATE Performing the conversion gives 

2000 kcal
1 d

1 d
1

1000 cal
86,400 s

=

⎛ ⎞
⎜ ⎟⎝ ⎠ 1 kcal

1

1 J
4.184 cal

=

⎛ ⎞
⎜ ⎟⎝ ⎠

1

5.53 J/s 5.53 W

=

⎛ ⎞
= =⎜ ⎟⎝ ⎠

 

ASSESS This is an average power. Human power output is higher during exercise. 

 32. INTERPRET This problem involves calculating an average power, and converting that power from J to 

horsepower.  

DEVELOP Because the horse pulls in the same direction as the displacement of the plow, and if we assume the 

horse pulls with a constant force (Fx = 750 N), then Equation 6.1, W = Fxx gives the work done by the horse. The 

average power supplied by the horse is simply the work divided by the time it takes to do the work (Equation 

6.15), or P W t= Δ Δ .With SI units, the result will be in Watts, so to convert to horsepower use the conversion 

equation in Appendix C, 1 hp = 746 W. 

EVALUATE The work done by the horse is 

( ) ( )
( ) ( )

750 N 200 m
500 W

5 min 60 s mi n
xF xWP

t t
Δ

= = = =
Δ Δ

 

Converting this result to horsepower gives (500 W)(1 hp/746 W) = 0.67 hp. 

ASSESS Note that modern car engines deliver hundreds of horsepower, so the equivalent of several hundred 

horses pulling!  

 33. INTERPRET This problem involves calculating the power output of a car battery, or the rate at which energy is 

drained from the battery. 

DEVELOP According to Equation 6.15, if work ΔW is done in time Δt, then the average power is / .P W t= Δ Δ  

EVALUATE Using Equation 6.15, the power output for each of the three cases is 

(a) 
( )
( )
1 kW h

= 60 kW
1 60 h

WP
t

⋅Δ
= =

Δ
 

(b) 
( )1 kW h

= 1 kW
1 h

WP
t

⋅Δ
= =

Δ
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(c) 
( )1 kW h 1000 W 41.7 W

24 h kW
WP
t

⋅Δ ⎛ ⎞= = =⎜ ⎟⎝ ⎠Δ
 

ASSESS From Equation 6.15, we see that when the amount of work done is fixed, the average power is inversely 

proportional to Δt. Thus, the average power output is the greatest in case (a) and smallest in case (c). 

 34. INTERPRET This problem involves calculating the average power output of a sprinter, given the work she does 

and the time in which she does it.  

DEVELOP The average power is simply the work done divided by the time it takes to do the work, P W t= Δ Δ  

(Equation 6.15).  

EVALUATE Inserting the given quantities into Equation 6.15 gives the average power as 

22.4 k J 2.1 k W
10.6 s

P = =   

ASSESS Notice that the length of the sprint is not relevant to the problem. Also note that we did not need to 

convert kJ to J, provided we retained the factor k in the result. 

 35. INTERPRET This problem involves calculating the total work done, given average power and time. 

DEVELOP From Equation 6.15, if the average power is P , then the amount of work done over a period Δt is 

W P tΔ = Δ . Note that we need to convert hp to SI units, which we can do with the help of Appendix C, where we 

find 1 hp 746 W.=  

EVALUATE The work done by the lawnmower is 

( ) ( ) ( ) 63.5 hp 746 W hp 3600 s 9.4 10  JW P tΔ = Δ = = ×  

ASSESS Given a constant average power, the work done is proportional to the time interval Δt. Note that the work 

done is positive, which means that the lawnmower is doing the work on the grass. 

 36. INTERPRET This problem involves the work-energy theorem and average power. We are asked to find the power 

output of a long-jumper during his prejump run. 

DEVELOP The work-energy theorem (Equation 6.14) states that ΔK = Wnet, and from the net work we can 

calculate the power output using Equation 6.15, P W t= Δ Δ .  

EVALUATE The energy expended in the prejump run is  

0 2
2 2 2

net 2 12 2
mvmW v v

=⎛ ⎞
= − =⎜ ⎟⎜ ⎟⎝ ⎠

 

Therefore, the average power is  

( ) ( )
( )

22
2 75 kg 10 m/s

1.2 k W
2 2 3.1 s
mvWP

t t
Δ= = = =
Δ Δ

 

to two significant figures. 

ASSESS Note that the power output is proportional to the final speed squared. 

 37. INTERPRET In this problem we are asked to estimate the power output or rate of work, while doing deep knee 

bends at a given rate.  

DEVELOP For a single deep knee bend, our final position is the same as the initial position, so our net 

displacement is zero. Considering that this is a one-dimensional problem, we can use Equation 6.8 to find the total 

work done in a single deep knee bend, then divide this by the time required for a single deep knee bend to find the 

power (Equation 6.15, P W t= Δ Δ ). 

EVALUATE Because the final position is the same as the initial position, we have x1 = x2 ≡ x in the limits of the 

integral in Equation 6.8. Thus the work done for a single deep knee bend is 

( ) 0 W
x

x

W F x dx= =∫  
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Thus, no work is done, so (in theory) no power is expended! 

ASSESS We work up a sweat doing deep-knee bends because our bodies are working against a host of frictional 

forces. Thus, we are not working against gravity, because gravity gives us as much energy on the way down as it 

takes on the way up. Instead, we get our exercise from working against friction. 

 38. INTERPRET This problem is an exercise in converting from power to energy. We are to find the area needed to 

collect a given amount of energy given the parameters of solar radiation reaching the Earth’s surface. 

DEVELOP If we multiply the power density hitting the surface of the Earth (1 kW/m2) by the surface area (m2) of 

our perfectly efficient solar collector, we get power (kW). This can be seen by dimensional analysis:  

kW

m
P = 2 m

⎛ ⎞
⎜ ⎟
⎝ ⎠

2
kW=  

The relationship between average power and time is given by Equation 6.14, P W t= Δ Δ , which we can use to 

solve this problem, given that the energy desired is ΔW = 40 kW·h. 

EVALUATE The time it takes to collect ΔW = 40 kW·h is thus 

( ) ( )2 240 kW h 1 kW/m 15 m

40 kW

P t t

t

⋅ = Δ = Δ

Δ =
h

1 kW

⋅

/ m( )2
15 m( )2

2.7 h=  

ASSESS This problem was simplified by dimensional analysis, which allowed us to combine the power collected 

per unit area (1 kW/m2) with the collection area (m2) to get power. 

 39. INTERPRET This problem involves the concept of average power. We are asked to find the time it takes to melt 

an ice cube given the energy needed for the task and the average power supplied. 

DEVELOP Use the definition of average power (Equation 6.15), P W t= Δ Δ , to solve the problem, given that W 

= 20 kJ and 900 WP = . 
EVALUATE The time required to melt the ice cube is 

320 10  J 22 s
900 W

Wt
P

Δ ×
Δ = = =  

ASSESS This result seems reasonable given common experience with microwave ovens. Note that the result will 

depend on the mass of the ice cube (can you deduce the relationship?). 

 40. INTERPRET This problem is an exercise in converting between power and energy. We are given two objects that 

require a different amount of power to operate, and we are to determine which one consumes the most energy if 

left on for the given periods of time. 

DEVELOP  Use Equation 6.15, P W t= Δ Δ , to calculate the energy consumed (ΔW) for each object given power 

and time. 

EVALUATE The hair dryer will consume an energy of ( ) ( ) ( )1.2 kW 10 min 60 s min 720 k JW P tΔ = Δ = = , 

whereas the night light will consume an energy of ( ) ( ) ( )7 W 24 h 3600 s h 605 k JW P tΔ = Δ = = . Thus, the 

hair dryer consumes more energy (but not much!). 

ASSESS Notice that we had to report both answers in the same units to facilitate comparing the results. 

PROBLEMS 

 41. INTERPRET The problem is about calculating work, given force and displacement. The object of interest is the 

box, which is being pushed up a ramp. For part (b) of the problem, we consider the work-energy theorem. 

DEVELOP Make a free-body diagram of the box (see figure below). Use Equation 6.5, W F r= ⋅ Δ , to calculate 

the work done in pushing the box up the ramp. 
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EVALUATE (a) The box rises Δy = 1 m vertically. This means that the displacement up the ramp (parallel to the 

applied force) is 

( ) ( )
1 m 2 m

sin sin 30
yr
θ

Δ
Δ = = =  

Therefore, the work done during this process is 

( ) ( ) ( )app app 200 N 2 m cos 0 400 JW F r= ⋅ Δ = =  

because the angle between the applied force and the displacement vector is 0°. 

(b) To find the mass, we first note that the work done by gravity is 

( ) ( )ˆ ˆ ˆ sing gW F r mg j xi y j mg y mg r θ= ⋅ Δ = − ⋅ Δ + Δ = Δ = − Δ−  

The work done by friction is 

( ) cosf k k k kW f r f r n r mg rμ μ θ= ⋅ Δ = − Δ = − Δ = − Δ  

where in the last step we have used n – mgcos(θ) = 0, which results from applying Newton’s second law to the box 

in the direction perpendicular to the incline. Because the speed of the box remains unchanged, the work-energy 

theorem W = ΔK, says the total work must be zero: 

Tot app 0g fW W W W= + + =  

This implies 

( ) ( )app sin cos sin cosg f k kW W W mg r mg r mg rθ μ θ θ μ θ= − − = Δ + Δ = Δ +  

from which the mass is found to be 

( ) ( ) ( ) ( ) ( ) ( )2

200 N
sin cos sin cos 9.8 m/s sin 30 0.18 cos 30

31 kg

a a

k k

W F
m

g r gθ μ θ θ μ θ
= = =

Δ + + ⎡ ° + ° ⎤⎣ ⎦
=

 

ASSESS The mass could also be found by solving Newton’s second law, with zero acceleration: 

( )

( )

net app sin cos 0

sin cos

k

a

k

F F mg ma

F
m

g

θ μ θ

θ μ θ

= − + = =

=
+

 

 42. INTERPRET This problem involves the concept of work. The object of interest is the car, and we are to calculate 

the work done in pushing it with the given force a distance of 5.6 m. 

DEVELOP  Because the forces applied to the car are not in the same direction as its displacement, we will use 

Equation 6.2, W = FΔrcos(θ), to calculate the work done. The angle θ is the angle between the force vectors and 

the displacement vector (θ = 25° for the two forces in this case). 

EVALUATE Each person applies a force F = 280 N at θ = 25° to the car, and they push the car Δr = 5.6 m. 

Inserting these quantities into Equation 6.2 gives the work per person as  

( ) ( ) ( ) ( )cos 280 N 5.6 m cos 25 1400 JW F r θ= Δ = =  

to two significant figures. 

ASSESS Because the people push at 25° to the displacement, they each supply Fsin(θ) = (280 N)sin(25°) = 118 N 

of force perpendicular to the displacement, which does no work at all. 

 43. INTERPRET You want to find out how much work you do during a particular exercise. 

DEVELOP You only do work when lifting the weight (gravity does the work to bring the weight back down). The 
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work required to lift the weight the given distance is W w y= Δ  (it's irrelevant at what angle the force from your 

arms is applied – the net result is that the weight moves up by yΔ ). We'll need to convert the work to kcal using 

1 kcal 4184 J=  from Appendix C.  

EVALUATE (a) Each repetition requires you to exert  

 ( ) ( ) 31 kcal20 N 0.55 m 11 J 2.63 10 kcal
4184 J

W w y −⎛ ⎞= Δ = = = ×⎜ ⎟⎝ ⎠
 

To get a 200 kcal workout, the number of reps you'd have to do is 

 3

200 kcal 76,000
2.63 10 kcal

N −= =
×

 

(b) If your workout takes 1.0 min, then the power output is just the work divided by the time: 

 200 kcal 4184 J 14 kW
1.0 min 1 kcal

WP
t

⎛ ⎞= = =⎜ ⎟⎝ ⎠Δ
 

ASSESS The answers seem unreasonably large. Typically, lifting weights burns around 300 kcal per hour. 

 44. INTERPRET The problem involves calculating the average force given work and displacement. The object of 

interest is the locomotive pulling a train. 

DEVELOP Use Equation 6.5, W F r= ⋅ Δ , to solve for the average force in the coupling between the locomotive 

and the rest of the train. Because the force is always in the direction of the displacement, the dot product reduces to 

the scalar product because cos(0) = 1. Thus, Equation 6.5 reduces to W = FΔr. 

EVALUATE The distance pulled by the locomotive is 5180 km 1.80 10  mrΔ = = ×  and the work done is W = 7.9 

× 1011 J, so the average force is  

11
6

av 5

7.9 10  J 4.4 10  N
1.80 10  m

WF
r

×
= = = ×

Δ ×
 

ASSESS The average force depends only on the total work done and the displacement. The train’s mass is not 

required to answer this question. 

 45. INTERPRET This problem involves calculating the work done as a result of a force acting at a nonzero angle with 

respect to the displacement. We are asked to find the angle that the rope makes with the horizontal, given the work, 

force, and distance over which the force acts. 

DEVELOP  Because the force is not parallel to the displacement, we must use the more general equation for work; 

Equation 6.5, W F r= ⋅ Δ . In scalar form, dot product gives W = FΔrcos(θ), where θ is the angle between the rope 

and the displacement direction (i.e., horizontal). 

EVALUATE We are given that W = 2500 J, F = 120 N, Δr = 23 m, so the angle θ is  

( ) ( )
2500 Jacos acos 0.44 rad 25

120 N 23 m
W
F r

θ
⎛ ⎞⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟⎝ ⎠Δ ⎝ ⎠

 

ASSESS Notice that the argument of the acos function is dimensionless, as it should be. The angle 25° is a 

physically reasonable result. 

 46. INTERPRET This problem is an exercise in vector multiplication. We are asked to evaluate the scalar products 

between different pairs of the unit vectors ˆˆ ˆ, , and .i j k  

DEVELOP As shown in Equation 6.3, the scalar product of two vectors A  and B  is defined as 

cosA B AB θ⋅ =  

where A and B are the magnitudes of the vectors andθ is the angle between them. With this definition, the scalar 

products between different pairs of unit vectors can be computed. 

EVALUATE (a) The dot product of any vector with itself equals its magnitude squared, 2 2cos 0A A A A⋅ = ° = , 

and the magnitude of any unit vector is unity: ˆˆ ˆ| | | | | | 1i j k= = = . Therefore  
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( )2ˆ ˆˆ ˆ ˆ ˆ 1 cos 0 1i i j j k k⋅ = ⋅ = ⋅ = =  

(b) If two vectors A  and B  are perpendicular, then their dot product is zero, ( )cos 90 0A B AB⋅ °= = . Because 

the unit vectors ˆˆ ˆ, , andi j k  are mutually perpendicular, the angle between any pair of them is 90°. Therefore 

( )2ˆ ˆˆ ˆ ˆ ˆ 1 cos 90 0i j j k k i⋅ = ⋅ = ⋅ = =  

(c) Using the distributive law, we have 

( ) ( )ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
x y z x y z

x x x y x z y x y y y z z x z y z z

x x y y z z

A B A i A j A k B i B j B k

A B i i A B i j A B i k A B j i A B j j A B j k A B k i A B k j A B k k

A B A B A B

⋅ = + + ⋅ + +

= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅

= + +

 

where we have used the results from (a) and (b). The final expression indeed agrees with Equation 6.4. 

ASSESS The quantity A B⋅ is a scalar formed by two vectors. The scalar product is commutative ( A B B A⋅ = ⋅ ) 

and distributive [ ( )A B C A B A C⋅ + = ⋅ + ⋅ ]. 

 47. INTERPRET This problem is an exercise in vector multiplication. We are asked to find the scalar product between 

two vectors of the form ˆ ˆai bj+  and ˆ ˆbi aj− , and to find the angle between them, for arbitrary a and b. 

DEVELOP  Use Equations 6.3 and 6.4 ( ( )cosA B AB θ⋅ =  and x x y y z zA B A B A B A B⋅ = + + , respectively). 

EVALUATE (a) The scalar product of ˆ ˆai bj+  and ˆ ˆbi aj−  is ( ) ( )ˆ ˆ ˆ ˆ 0ai bj bi aj ab ab+ ⋅ − = − = . 

(b) The angle between the two vectors is θ = acos(0) = 90°. 

ASSESS Thus, for arbitrary a and b, the vectors ˆ ˆai bj+  and ˆ ˆbi aj−  are perpendicular. 

 48. INTERPRET Your job is to determine whether the force applied by the tractor agrees with the limit given on the 

amount of work done per distance.  

DEVELOP To maximize the work done by the tractor, we'll assume it pushes in the direction parallel to the 

airplane's motion. Using Equation 6.1, ,W F x= Δ we'll check to see whether it uses more or less energy than it's 

claimed to. 

EVALUATE The tractor exerts a force of 0.42 MN over a distance of 25 m, then the work it does is  

 ( ) ( )0.4 MN 25 m 10.5 MJW F x= Δ = =  

So, no, the tractor does not meet its specifications. It requires more energy than 10 MJ to move an airplane 25 m.  

ASSESS It doesn't seem like the tractor is too far off. The work it does is over its specifications by half a MJ, 

which is the energy in roughly 0.3% of a gallon of gasoline (see Appendix C). But since the airline company has to 

presumably move hundreds of airplanes every day across the country, this inefficiency may add up to something 

significant.  

 49. INTERPRET This problem involves finding the work done by the given force vector that acts through the given 

displacement.  

DEVELOP Use the general form of the expression for work, Equation 6.5: W F r= ⋅ Δ , with 
ˆˆ ˆ67 23 55 NF i j k= + +  and  

( ) ( ) ( )2 1
ˆˆ ˆ21 16 10 31 14 0 m

ˆˆ ˆ5 21 14

r r r i j k

i j k

Δ = − = − + − + −

= − +
 

EVALUATE Inserting the given force and displacement into Equation 6.5 gives 

( ) ( ) ( )ˆ ˆˆ ˆ ˆ ˆ67 23 55 N 5 21 14 m 335 483 770 Nm 622 JW i j k i j k F r= + + ⋅ − + ⋅ Δ = − + =  

ASSESS Notice that we must keep track of the signs of the individual terms in doing the dot product to be sure to 

get the correct result. 

 50. INTERPRET In this problem we are asked to find the work done by a non-constant force that varies with position.  

DEVELOP We are dealing with a one-dimensional varying force, ( ),F x  so to evaluate the work done, we need to 

integrate using Equation 6.8: 
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 2

1

x

x
W Fdx= ∫  

EVALUATE The work done on the particle moving from 0x = to 6 mx =  is 

 ( ) ( )2

1

6m6m 32 3 2

0 0

1 1 5 N/m 6 m 360 J3 3
x

x
W Fdx ax dx ax= = = = =∫ ∫  

ASSESS Notice that the units of ( )F x  are in N when x is in m, but once we integrate we get an extra factor of x, 

which means the integral has units of J, as expected. 

 51. INTERPRET This problem involves calculating spring constants given the work it takes to deform the springs.  

DEVELOP Use Equation 6.10, W = kx2/2, to express the work W done in terms of the deformation x for each 

spring. We are given that 2WA = WB and xA = 2xB. 

EVALUATE For spring A, 2
A A A 2W k x= , and for spring B 2

B B B 2W k x= . Taking the ration of these two 

equations and using the given relations between springs A and B gives 

2
A A A

2
B B B

A

B

B A

1 4
2

8

W k x
W k x

k
k

k k

=

=

=

 

ASSESS Note that the spring constant is linear in work, but quadratic in spring deformation. 

 52. INTERPRET This is a one-dimensional problem in which we are asked to find the work done by a non-constant 

force that varies with position.  

DEVELOP Because we are dealing with a force F(x) that varies with position, we need to use the more general 

expression for work in one dimension, which is Equation 6.8: 

( )2

1

x

x
W F x dx= ∫  

With ( )F x a x= , we obtain ( )
2

2

1 2
1

1

1/ 2 3 / 2 3 / 2 3 / 2
2 1

2 2
3 3

x
x

x x x
x

aW ax dx ax x x→
⎛ ⎞= = = −⎜ ⎟⎝ ⎠∫ . 

EVALUATE Evaluating the above expression for the work for each case, we find 

(a) 1/ 2 3 / 2
0 3

2 (9.5 N/m )(3 m) 33 J
3

W → = =  

(b) 1/ 2 3 / 2 3 / 2
3 6

2 (9.5 N/m )[(6 m) (3 m) ] 60 J
3

W → = − =  

(c) 1/ 2 3 / 2 3 / 2
6 9

2 (9.5 N/m )[(9 m) (6 m) ] 78 J
3

W → = − =  

ASSESS Because the force increases with x (as x ) more work is done as the object is displaced further in the x 

direction. 

 53. INTERPRET This is a one-dimensional problem that involves calculating the work done given a non-constant 

force.  

DEVELOP  The force given varies with position, so we need to use the more general expression for work in one 

dimension; Equation 6.10: 

( )2

1

x

x
W F x dx= ∫  

with F(x) given in the problem statement. The limit of the integration are from x1 = 0 to x2 = x. 

EVALUATE Evaluating the integral gives 
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2
0 0

0 20
0 0

22
0

0 0
0 0 0

22
0

0 0
0 0

( )

1
2

2

x

x

L x L
W F dx

L L x

LxF L x
L L x

LxF x L
L L x

⎡ ⎤− ′
= − ′⎢ ⎥+ ′⎣ ⎦

⎛ ⎞′= − +′⎜ ⎟ + ′⎝ ⎠

⎛ ⎞
= − + −⎜ ⎟+⎝ ⎠

∫

 

ASSESS Note that we changed the integration variable from x to x' simply to avoid confusing it with the upper 

limit x of the integration. 

 54. INTERPRET As you push the swing, you are doing work against gravity. While gravitational force is constant, the 

path is a circular arc so the force required varies. Therefore, this is a two-dimensional problem in which we need to 

calculate the work done by a varying force. 

DEVELOP Draw a free-body diagram of the situation (see figure below). Because this is a two-dimensional 

problem in which the orientation of the force varies with respect to the displacement, we need to use the most 

general form of the expression for work, 

( )
2

1

r

r

W F r dr= ⋅∫  

Because the path of the swing is a circular arc (radius L and differential arc length | | )dr Ldθ= , only the 

components of force acting tangent to the circle (labeled ||F  in the figure below) do work on the swing. From the 

free-body diagram, we see that the force acting in the tangential direction is ( )|| sinF mg θ= . To pull the swing up 

to an angle f at constant speed means that we supply a force equal in magnitude to this force but in the opposite 

direction, so the work we do is 

||0 0 0
| |  sinW F dr F dr mg Ld

φ φ φ
θ θ= ⋅ = = ⋅∫ ∫ ∫  

The radial (or perpendicular) components do no work because the scalar product with the path element is zero. 

Thus, the tension in the chains and the radial components of gravity or the applied force do no work. 

 
EVALUATE Evaluating the integral just derived for the work gives 

0cos (1 cos )W mgL mgLφθ φ= − = −  

which is the expression given in the problem statement. 

ASSESS The result can also be derived using W = mgh, where h = L[1 – cos(φ)] is the vertical distance measured 

from the bottom of the swing. Thus, the work is the energy required to lift the child on the swing by a vertical 

distance h. 

 55. INTERPRET This problem involves calculating the (relative) speed of two particles, given their relative kinetic 

energy and mass.  

DEVELOP Use Equation 6.13, K = mv2/2 to express the kinetic energy of each particle. Thus, the kinetic energy of 

particle 1 is 2
1 1 2K mv=  and 2

2 2 2K mv= . The problem states that K1 = K2, and m1 = 4m2, so we can find the 

ratio of the speeds by taking the ratio of the equations. 

EVALUATE Taking ratio K1/K2 gives 
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2
1 1 1

2
2 2 2

2
1
2
2

2 1

1 4

2

K m v
K m v

v
v

v v

=

=

= ±

  

ASSESS The positive/negative sign indicates that the orientation of the speeds does not matter, only the 

magnitude matters. In other words, it does not matter if both particles move in the same direction, or if they move 

in opposite directions. 

 56. INTERPRET This problem is about the distance the plane can be towed with a given amount of work done by the tractor. 

DEVELOP Equation 6.2, cos ,W F r θ= Δ applies here. The displacement is horizontal but the applied force 

(tension in the link) is at an angle 22θ = ° with the horizontal. 

EVALUATE Using Equation 6.2, the distance the plane moves is 

6

5

8.7 10  J 22.9 m
cos (4.1 10 N)cos22x

W Wx
F F θ

×
Δ = = = =

× °
 

ASSESS Only the horizontal component of the force, cos ,xF F θ= does the work. 

 57. INTERPRET This is a one-dimensional problem that involves calculating the work done given a non-constant 

force.  

DEVELOP  The force given varies with position, so we need to use the more general expression for work in one 

dimension; Equation 6.10: 

( )2

1

x

x
W F x dx= ∫  

with F(x) given in the problem statement. The limits of the integration are from x1 = 0 to x2 = x. 

EVALUATE Evaluating the integral gives 

00 22
0 0 0 0

0 0
0 0 00 0

1 
2 2 2

xx F F F xxW xdx F x
x x x

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠∫  

ASSESS Thus, if the force varies linearly with position, the work varies quadratically.  

 58. INTERPRET In this one-dimensional problem, we are asked to find the work done by a non-constant force that 

varies with position. 

DEVELOP Because we are dealing with a force F(x) that varies with position, we need to evaluate the work using 

Equation 6.8: 

2

1

x

x
W Fdx= ∫  

With 3/ 2F ax=  we obtain ( )
2 2

1 2

11

3 / 2 5 / 2 5 / 2 5 / 2
2 1

2 2
5 5

x x

x x
xx

aW ax dx ax x x→
⎛ ⎞= = = −⎜ ⎟⎝ ⎠∫ . 

EVALUATE The work required in moving the object from 0x =  to 14 mx = is 

( ) ( )5 /23/2
0 14 m

2 0.75 N/m 14 m 220 N m 220 J
5

W →
⎛ ⎞= = ⋅ =⎜ ⎟⎝ ⎠

 

ASSESS Because the force increases with x (as 3/ 2x ), more work is done as the object moves further in the x 

direction. 

 59. INTERPRET This problem is an exercise in vector multiplication. We are given two vectors of equal magnitude 

and the relationship between their scalar product. With this information, we are to find the angle between the 

vectors. 

DEVELOP We are told that A = B and that 2 3A B A⋅ = . Use Equation 6.3 to find the angle θ between the 

vectors. 

EVALUATE Evaluating the scalar product using Equation 6.3 gives 
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( ) ( )
( )

2 2cos cos 3

acos 1 3 70.5

A B AB A Aθ θ
θ

= = =

= =

⋅
 

ASSESS Note that an equivalent condition is 2 3A B B⋅ =  because A = B. 

 60. INTERPRET In this problem the pump (with a given power) is doing work against gravity to deliver water to a 

tank above the ground. The quantity of interest is the amount of water that the pump can deliver during a given 

time interval. 

DEVELOP According to Equation 6.15, if the average power is P , then the amount of work done over a period 

Δt is W P tΔ = Δ . Because the work required to lift an object of mass m to a vertical height h is W = mgh, the rate 

at which the mass can be delivered is  

W m m PP gh
t t t gh

Δ Δ Δ⎛ ⎞= = ⇒ =⎜ ⎟⎝ ⎠Δ Δ Δ
 

In SI units, 1 hp = 746 W. 

EVALUATE Using the expression above, we find the rate at which water is delivered to the tank to be 

( ) ( )
( ) ( )2

0.5 hp 746 W/hp
0.63 kg/s

9.8 m/s 60 m
m P
t gh

Δ
= = =

Δ
 

to two significant figures. Because the mass of 1 gallon ( 3 31 gal 3.786 10 m−= × ) of water is 

( ) ( )3 3 31000 kg/m 3.786 10 m 3.786 kg−× = , the rate can also be written as 

kg s kg0.634 60 3.786 10 gal/min
s min gal

m
t

⎛ ⎞Δ ⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠Δ ⎝ ⎠
 

to two significant figures. 

ASSESS Given a constant average power, the rate of delivery /m tΔ Δ  is inversely proportional to the height h. 

The greater the height h, the slower is the rate, as expected. 

 61. INTERPRET This problem involves converting power from W to gallons per day.  

DEVELOP From Appendix C we find that the energy content of oil is 39 kW·h/gal. Let the units guide you in 

converting from GW to gallons/day. 

EVALUATE The import rate is  

800 G W( ) 1 gal
39 k W h⋅

1

610 k
=

⎛ ⎞
⎜ ⎟⎝ ⎠ G

1

24 h
=

⎛ ⎞
⎜ ⎟⎝ ⎠

1

12490 10 gal day
day

=

⎛ ⎞
= ×⎜ ⎟⎝ ⎠

  

ASSESS This may also be express as 490 Tgal/day. 

 62. INTERPRET This problem involves the total work done, given the average power and time. The object of interest 

is the runner, and we are to calculate the work done given a formula for the runner’s power output in terms of mass 

and speed. 

DEVELOP According to Equation 6.15, if the average power is P , then the amount of work done over a period  

Δt is W P tΔ = Δ . In this problem, P  is a function of the runner’s speed, which is v = 5.2 m/s. The time for the 

runner to complete the race is Δt = (10,000 m)/(5.2 m/s) = 1923 s. 

EVALUATE  Over the entire race time, the runner’s work output is 

( )
( ) ( ) ( ) ( )

6

54 kg 4.27 J/kg m 5.2 m/s 1.83 W/k g 1923 s

2.12 10  J 0.588 kW h

W P t m bv c tΔ = Δ = − Δ

= ⎡ ⋅ − ⎤⎣ ⎦
= × = ⋅

 

ASSESS Note that the units work out to be units of power, as expected. Also, were the power a function of time 

(which it undoubtedly is in reality—runner’s have less power at the end of the race than at the beginning), we 

would have to use Equation 6.18 to find the work done. 
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 63. INTERPRET You have the mass and power of a car, and need to find the highest rate at which it can climb a given 

slope. You'll need to use work and energy techniques. 

DEVELOP Assume the car is moving at constant speed, such that the net force on the car is zero. That means the 

force from the engine propelling the car forward along the road, c ,F  must balance the component of the 

gravitational force that is parallel to the ground and points back down the slope. In other words, c sin .gF F θ=  

This force is related to the car's power through Equation 6.19: c .P F v= ⋅  As we have defined it, the force is in the 

same direction as the velocity of the car, so c .P F v=  

EVALUATE Using all its available power, the car can climb the slope at a speed of 

 
( ) ( )2

c

35 kW 26 m/s
sin 1750 kg 9.8 m/s sin4.5

P Pv
F mg θ

= = = =
°

 

ASSESS This speed (58 mph) seems reasonable for the grade involved. The actual maximum speed will be lower 

due to air resistance, which is not negligible at this speed. Note, as well, that you can derive the same result by 

arguing that the car must work against gravity to climb the slope. Therefore, the component of its force pointing 

straight up must equal mg. The angle between this upward force and the velocity of the car is 90 4.5 85.5 ,° − ° = °  

so the power provided by the car is ( )cos 85.5 ,P mgv= °  which gives the same answer as the above equation. 

 64. INTERPRET In this problem a constant average power is supplied to the car as it climbs a slope against the air 

resistance. We want to know the angle of the slope if the car is moving at a steady speed. 

DEVELOP At constant velocity, there is no change in kinetic energy, so the net work done on the car is zero. 

Therefore, the power supplied by the engine equals the power expended against gravity and air resistance. The 

power can be found from Equation 6.19, .P F v= ⋅  

EVALUATE Because gravity mg  makes an angle of θ +90° with the velocity v  (where θ is the angle of the slope 

with respect to the horizontal), the power expended against gravity is 

( ) ( )cos 90 singP mg v mgv mgvθ θ= ⋅ = + ° = −  

Similarly, the air resistance makes an angle of 180° to the velocity, so 

( )air air air aircos 180P F v F v F v= ⋅ = ° = −  

In SI units, v = 60 km/h = 16.7 m/s. Because the car moves at a constant speed, Tot car air 0gP P P P= + + = , or 

car air airsingP P P mgv F vθ= − − = +  

Solving the equation gives 

( ) ( )
( ) ( ) ( )

car air
2

38000 W 450 N 16.7 m/s
asi n asin 7.7

1400 kg 9.8 m/s 16.7 m/s
P F v
mgv

θ
⎡ ⎤−−⎛ ⎞
⎢ ⎥= = = °⎜ ⎟⎝ ⎠ ⎢ ⎥⎣ ⎦

 

ASSESS To see that the result makes sense, we first note that increasing Pcar, (i.e., increasing the power output of 

the car’s engine), will allow the car to climb a steeper slope. On the other hand, when car airP P< , we get a negative 

value for θ, which means that the car’s power is not large enough to overcome the air resistance, and the car will 

not be able to climb the slope at all. 

 65. INTERPRET This problem involves the concept of work and Newton’s second law (for constant mass), 

netF ma= . The object of interest is the box, and we are asked to find the work done to push it up an inclined slope 

a given distance. 

DEVELOP  Draw a free-body diagram of the situation (see figure below). To express the forces in terms of known 

quantities, apply Newton’s second law to the box. This gives 

( )
( ) ( ) ( )k app

app

sin 0
cos sin 0

cos 0 k

f F mg
mg F mg

n mg

θ
μ θ θ

θ

⎫− + − = ⎪− + − =⎬
− = ⎪⎭

 

which we can solve for μk given that we know the work done by you pushing the box up the slope is Fappd = 2.2 kJ 

(see Equation 6.1) because the force you apply is in the same direction as the displacement of the box. 
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u

nr

F app
r

w  5 mgr r

f k
r

 
EVALUATE Inserting the known quantities into the expression above and solving for μk gives 

( )
( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

2

2

2200 J 3.1 m 78 kg 9.8 m/s sin 22sin
0.60

cos 78 kg 9.8 m/s cos 22
app

k

F mg
mg

θ
μ

θ
−−

= = =  

 66. INTERPRET We're asked to estimate the power output of the human heart. 

DEVELOP Imagine that blood circulates through the body through one "tube" that goes from the heart down to the 

feet, then up to the head, and finally back to the heart where it starts over again. In this simplified model, the heart 

only has to do work when pushing blood upwards from the feet to the head (gravity will do the work when blood is 

falling downwards). We will determine the work required to pump 1L of blood up from the feet to the head. We 

will use this to approximate the power output of the heart, assuming 5L of blood is pumped through the body per 

minute. 

EVALUATE (a) Since the heart has to work against gravity, the work required to move 1L (1 kg) of blood the 

distance between feet and head is just 

 ( ) ( ) ( )2
1L 1 kg 9.8 m/s 1.7 m 17 JW mgh= = =  

(b) If the heart pumps blood at 5L/min, the power output is 

 1L5 5 17 J 1.4 W
60 s

W
P

t
⋅= = =

Δ
 

ASSESS A typical male expends about 1800 kcal/day during rest (this is called the basal metabolic rate). In SI 

units, that's about 87 W. About 20% of this energy expenditure is used by the heart, so the heart power output is 

somewhere around 17 W.  

ASSESS The units all cancel to give μk as a dimensionless quantity, as expected. 

 67. INTERPRET The object of interest here is the chest. The physical quantity we are asked to find is the power 

needed to push the chest against friction. This problem involves the concept of work and power, and we will have 

to use Newton’s second law. 

DEVELOP If you push parallel to a level floor, the applied force equals the frictional force (from Newton’s 

second law, Fnet = ma, where the acceleration is zero), so kaF f= . Because (again by Newton’s second law) the 

normal force equals the weight of the box (n = mg) the applied force is 

k kaF n mgμ μ= =  

Use Equation 6.19, ,P F v= ⋅  to find the power needed. Because we are applying a force in the same direction as 

the displacement of the box, we can use Equation 6.1, W = FΔx, to find the work done. 

EVALUATE (a) The power required is 

( ) ( ) ( ) ( )2
k 0.78 95 kg 9.8 m/s 0.62 m/s 450 Wa aP F v mgvμ= = = =  

which is about 0.6 hp. 

(b) The work done by the applied force acting over a displacement Δx = 11 m is 

( ) ( ) ( ) ( )2
k 0.78 95 kg 9.8 m/s 11 m 8.0 kJa aW F x mg xμ= Δ = Δ = =  

ASSESS An alternative way to calculate the power is to note that the time required to push the chest 11 m is 

( ) ( )11 m 0.62 m/s 17.74 st x vΔ = Δ = = . Using Equation 6.17, we have 

( ) ( )450 W 17.74 s 8.0 kJa aW P t= Δ = =  
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 68. INTERPRET This problem involves calculating the power supplied by you to the spoon, and the work you do if 

you supply this power for 1 min.  

DEVELOP  Apply Equation 6.19, P F v= ⋅ , to find the power expended. Because the force you supply is always 

in the direction of the spoon’s velocity, the angle in the scalar product between the force and the velocity is zero, 

so Equation 6.19 reduces to P =Fv. To find the work done, apply Equation 6.17, W = PΔt. 

EVALUATE (a) Inserting the given quantities into the expression for power derived above gives 

( ) ( )45 N 0.29 m/s 13 WP Fv= = =  

(b) The work done in applying this power for 1.0 min is ( ) ( )13.05 W 60 s 780 JW P t= Δ = =  to two significant 

figures. 

ASSESS Notice that in part (b), we used the result of part (a), but retained extra significant figures because the 

result for part (a) was an intermediate result in this case. 

 69. INTERPRET This problem is about the total work done, given the power and time. The object of interest is the 

machine whose power output is given, and we are to find the total work is done over the given time interval. 

DEVELOP The power given in this problem is time-varying. Therefore, use Equation 6.18: ( )2

1

t
tW P t dt= ∫  to find 

the total work done, with t1 = 10 s, t2 = 20 s, and P = ct2. 

EVALUATE Inserting the given quantities into Equation 6.18, we obtain 

( ) ( ) ( ) ( )
2

2

1 2
1

1

3 32 3 3 3 2
2 1

1 1 18 W/s 20 s 10 s 42 kJ
3 3 3

t
t

t t t
t

cW ct dt ct t t→
⎡ ⎤= = = − = − =⎣ ⎦∫  

ASSESS Because the power increases quadratically with t (i.e., as t2), as time progresses, more work is done by 

the machine over the same interval of time. For example, the work done in a 10-s interval from t1 = 20 s to t2 = 30 s 

( 20 30 s 114 kJsW → = ) is greater than the work in a 10-s interval from t1 = 10 s to t2 = 20 s ( 10 20 s 42 kJsW → = ). 

 70. INTERPRET In this problem we consider the power output of a bumblebee. 

DEVELOP As the bee's wings beat, they complete a circle: first flapping down and then flapping back up to where 

they began. Let's assume for simplicity that the upstroke takes negligible time, so that the wing is essentially 

always in the downstroke. During a downstroke, the wings push down on the air, and by Newton's third law the air 

pushes back up on the bee. Therefore, in order to hover, the average downward force supplied by the wings has to 

equal the bee's weight, ,F mg=  otherwise the air wouldn't push back up on the bee enough to keep it at a constant 

height above the ground. To find the average power exerted by the bee, we'll need to multiply this average 

downwards force by the average downward velocity, P Fv=  (from Equation 6.19, where by definition the 

vectors point in the same direction). We can estimate the downward velocity by taking the average wing 

displacement, 1.5 mm,rΔ =  and dividing by the time of one wingbeat, 1
100 s.tΔ =  

EVALUATE Using the arguments above, the average power is 

 
( ) ( ) ( )

( )
6 2 3

1
100

0.25 10 kg 9.8 m/s 1.5 10 m
0.37 W

s
mg rP
t

μ
− −× ×Δ

= = =
Δ

 

ASSESS We've treated the wing movement in a very simplistic way, but the answer seems reasonable. However, 

one could assume that the upstroke takes roughly the same amount of time as the downstroke. This modifies the 

answer slightly, since the wings essentially exert no force during the upstroke. Therefore, the force during the 

downstroke would have to be twice the bee's weight, 2 ,mg  to keep the average force equal to the bee's weight. 

The downward velocity would also be double the value we calculated, since the wing would be moving down for 

only half the wingbeat. The power during a downstroke would be 4 times what we calculated above. But averaged 

over an entire wingbeat (both downstroke and upstroke) the power would be twice what we calculated above.  

 71. INTERPRET This problem involves the concepts of power and work (or energy). Over a given period of time, the 

refrigerators will consume different amounts of energy, which we can calculate given their power consumption. 

We are to find when the cost difference for the energy consumed equals the difference in the price of the 

refrigerators. 
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DEVELOP To find the energy consumed, use Equation 6.17, W = PΔt. Thus, the work done (i.e., energy 

consumed) by the standard refrigerator is Ws = PsΔts, where Ps = 425 W and Δts = 0.20Δt. The work done by the 

energy-efficient refrigerator in the same time interval is Wee = PeeΔtee, where Pee = 225 W and Δtee = 0.11Δt. The 

cost difference Δc for the energy consumed is Δc = p(Ws – Wee), where p = 9.5 ¢/kW·h is the price. We need to find 

the time interval for which the cost difference is equal to the difference in the price of the refrigerators. 

EVALUATE The difference in the original price of the refrigerators is Δp = $1150 – $850 = $300. The time 

interval to recuperate this difference is 

( ) ( ) ( )

( ) ( )

s s ee ee s ee

s ee

0.20 0.11

$
0.20 0.11

p c p P t P t p t P P

pt
p P P

Δ = Δ = Δ − Δ = Δ ⎡ − ⎤⎣ ⎦
ΔΔ = =

⎡ − ⎤⎣ ⎦

300

$ 0.095 kW( ) ( )1 1h 0.20 0.425 k W
− −⋅ ( ) ( )0.11 0.225 k W− ( )

45.24 10 h 6.0 y= × =
⎡ ⎤
⎣ ⎦

 
ASSESS Notice that we converted the units so that all quantities were expressed in the same units. The answer is 

expressed to two significant figures because that is the least number of significant figures in the data. 

 72. INTERPRET Your friend is lifting weights and you want to verify how much energy she is using in her workout. 

This is similar to Problem 6.43. 

DEVELOP Your friend is doing work against gravity in lifting the weight the given height: W mgh=  (see Figure 

6.13 in the text). We're going to want to compare this to the energy content of a candy bar, so we'll use the 

conversion 1 kcal 4.184 kJ=  from Appendix C.  

EVALUATE Your friend does 5 repetitions, which requires the work of  

 ( ) ( ) ( )2 1 kcal5 5 45 kg 9.8 m/s 0.50 m 1.10 kJ 0.264 kcal
4.184 J

W mgh ⎛ ⎞= = = =⎜ ⎟⎝ ⎠
 

This is not enough to burn off the 230 kcal candy bar. To do that, your friend would need to do significantly more 

reps:  

 ( )1
5

230 kcal 4400
0.264 kcal

N = =  

ASSESS The work calculated above underestimates the amount of energy used while exercising, since the body 

burns calories just to keep the heart, lungs and other organs working. About 30 minutes of moderate weight 

training should burn off the candy bar.  

 73. INTERPRET This problem is about the total work done, given the power and time. The object of interest is the 

machine, and we are to show that the total work done is finite, even though the machine runs forever. 

DEVELOP The power given in this problem is time-varying. Therefore, to find the work done in a given time 

interval, we need to use Equation 6.18, ( )2

1

t
tW P t dt= ∫ . 

EVALUATE With ( ) 2 2
0 0 0/( )P t P t t t= + , we obtain 

( ) ( ) ( ) 0

2 2
20 0 0 0

0 0 0 02 20 0
00 0

P t P tdtW dt P t P t
t tt t t t

∞
∞ ∞

= = = =
++ +∫ ∫  

ASSESS The result shows that even though the machine operates forever, the total amount of work done is finite. 

This is not surprising because the power output decreases quadratically with time. 

 74. INTERPRET This problem involves power, work, and kinetic energy. We will also need to use the kinematic 

Equation 3.4, v dr dt= , to find an expression for the distance covered by the train. 

DEVELOP Because the power is constant in time, we apply Equation 6.17, W = PΔt, to find the work done. The 

work done is related to the speed of the train by Equation 6.14, ΔK = Wnet, and because the train starts from rest, ΔK 

= mv2/2, where v is the final speed of the train. The position of the train can be found by integrating Equation 3.4. 

EVALUATE Equating the change in kinetic energy to the net work done, we find the following expression for the 

train’s speed: 
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net

21
2

2

K W

mv Pt

Ptv
m

Δ =

=

= ±

 

The position of the train is given by  

( )
3

0 0

2 2 2
3

t t Pt Ptx v t dt dt
m m

′= = ± = ±′ ′ ′∫ ∫  

ASSESS The positive and negative signs correspond to the train moving to the right or to the left. 

 75. INTERPRET In this one-dimensional problem we are asked to find the work done by a non-constant force that 

varies with position. We want to show that although the force becomes arbitrarily large as x approaches zero, the 

work done remains finite. 

DEVELOP Because we are dealing with a one-dimensional non-constant force F(x) use Equation 6.8, 

( )2

1

x
xW F x dx= ∫ , to find the work done. Let x1 approach zero to find the limiting expression for the work. 

EVALUATE With ( ) 1/ 2F x bx−=  we obtain 

( )2
2

1 2
1

1

1/ 2 1/ 2
2 12 2

xx

x x x x
W bx dx bx b x x−

→ = = = −∫  

Thus, we see that 
1 2x xW → is finite as 1 0.x → In fact, 22 ,W b x→  for 1 0x → . 

ASSESS The result demonstrates that even though a function F(x) may diverge at some value 0 ,x x=  the integral 

( )F x dx∫  can be finite at 0 .x x=  

 76. INTERPRET You're asked to incline the treadmill so that the patient exerts energy at the desired rate. 

DEVELOP The patient will have to work against gravity in walking up the inclined treadmill, ,gF F= −  so the 

power output will be: cos .P F v mgv θ= ⋅ =  The angle between the gravitational force and the patient's velocity is 

equal to o90 ,θ α= − where α  is the inclination angle. See the figure below. 

a

F

v

Fg

r

r

r

u

 
EVALUATE Solving for the inclination angle gives:  

 
( ) ( )

( ) ( ) ( )

km/h
m/so 1 o 1 o

2

350 W 3.6
90 cos 90 cos 12

75 kg 9.8 m/s 8.0 km/h
P
mgv

α − −
⎛ ⎞⎛ ⎞

= − = − =⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

ASSESS The angle seems reasonable for a treadmill. Notice that you can arrive at the same answer by using the 

fact that ( )ocos cos 90 sin .θ α α= − =  

 77. INTERPRET Your task is to find the work needed to stretch a bungee-jump cord to double its unstretched length. 

The force exerted by the cord is similar to that of a spring, but with extra terms. 

DEVELOP The applied force is equal and opposite to the cord's restorative force, applied to the cord , app .F F= −  

To find the work required to double the length of the cord, we integrate the applied force from 0x =  to 0 .x L=  

EVALUATE (a) Integrating the force equation gives  
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 0 1 1 1 12 3 5 2 3 4 5
0 0 0 02 3 4 50

L
W kx bx cx dx dx kL bL cL dL= + + + = + + +∫  

(b) With the given values the work becomes 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 3 4

2 3 4 51 N 1 N 1 N 1 N
2 m 3 4 5m m m

420 10m 86 10m 12 10m 0.50 10m 12 kJW = + − + + − =  

ASSESS Unlike for a spring, the work formula for the cord is not symmetric around 0x = . This is because the 
cord is easier to stretch than to squeeze. For example, the work needed to squeeze the cord to half its length 

( )1
02x L= −  is 11 kJ, which is practically the same as the work to double it. 

 78. INTERPRET We are to find the work done against friction while pushing an object up a circular ramp. The normal 

force (and thus the frictional force) varies, so we will need to use the integral equation for work. We want to show 

that the work done against friction is 2 1/ 2(2 ) .mg hR hμ −  

DEVELOP We begin by drawing a free-body diagram, as shown in the figure below. The normal force is 

cos ,gF mg θ= so the frictional force is cosf nF F mgμ μ θ= = . From Equation 6.11, the work done against 

friction is 2

1

s
s fW F ds= ∫ ⋅  (where we use s instead of r because we are dealing with an arc element). 

 
EVALUATE Inserting the expression for force into Equation 6.11 gives 

( )2

1 0cos cos .fs
sW mg ds mg Rdθ θ

θμ θ μ θ θ=
== ∫ = ∫  We need to relate the final angle fθ  to the height h: 

cos cos 1 acos 1f f f
h h

h R R
R R

θ θ θ ⎛ ⎞= − ⇒ = − ⇒ = −⎜ ⎟⎝ ⎠
 

Inserting this result into the expression for work gives 

acos 1 1

0

2
1 2

2

cos sin cos 1 sin(0)

sin cos 1 2 2

h
R h

W mgR d mgR
R

h h h
W mgR mgR mg hR h

R R R

μ θ θ μ

μ μ μ

⎛ ⎞−⎜ ⎟ −⎝ ⎠

−

⎧ ⎫⎡ ⎤⎛ ⎞= = − −⎨ ⎬⎜ ⎟⎢ ⎥⎝ ⎠ ⎪⎣ ⎦⎩ ⎭

⎡ ⎤⎛ ⎞= − = − = −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∫
 

which is the expression for work given in the problem statement. 

ASSESS Note that this is only the work done against friction. It does not include the work done against gravity. 

 79. INTERPRET In this two-dimensional problem, we need to calculate the work done against a given vector force, 
along a vector path. We will use the most general integral equation for work to find the work done. 

DEVELOP Calculate the work using Equation 6.11, 2

1
.s

sW F dr= ∫ ⋅  The path taken follows 2 ,y ax bx= −  where 

a = 2 m• 1 and b = 4, so 2dy
dx ax b= −  and ( )ˆ ˆ2 .dr dxi ax b dxj= + −  The force is ˆ ˆ,F cxyi dj= +  where c = 10 N/m2 

and d = 15 N. The position x goes from x= 0 to x = 3 m. 

EVALUATE Inserting the expression for the force and the differential dr  into  

( ) ( ) ( )

( ) ( ) ( )

3m 3

0 0
3 32 3 2

0 0
34 3 21 1

4 3 0

ˆ ˆ ˆ ˆ2 ) 2

2 2

405 J 360 J 270 J 180 J 135 J

x

x
W cxyi dj i ax b j dx cxy d ax b dx

W cx ax bx d ax b dx cax cbx adx bd dx

W cax cbx adx bdx

=

=
⎡ ⎤= + ⋅ + − = ⎡ + − ⎤⎣ ⎦⎣ ⎦

⎡ ⎤= − + − = − + −⎣ ⎦

⎡ ⎤= − + − = − + − =⎣ ⎦

∫ ∫
∫ ∫  
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ASSESS Because it is not obvious to what physical situation this problem relates, it’s not possible to compare the 

result with an estimate or a limit gained from our understanding of physics. Notice, however, that the units work 

out as expected. 

 80. INTERPRET Repeat Problem 79, but instead of taking the path described therein, take “right-angle” paths. We 
still use the general integral equation for W to find the work in each case. 

DEVELOP In part (a), we first move along the x axis to the point (3 m, 0) and then parallel to the y axis to the 

point (3 m, 6 m). In part (b), we move first along the y axis to (0, 6 m) and then parallel to the x axis to (3 m, 6 m). 

We use 2

1

s
sW F dr= ∫ ⋅  to find the work in each case, where ˆ ˆF cxyi dj= + , c = 10 N/m2 and d = 15 N. 

EVALUATE  

(a) ( ) ( )
( ) ( )

( ) ( ) ( )

3m 6m

00 0

0
3m 6m 6m

0 00 0

6 m

0

ˆ ˆ ˆ ˆ

|

15 N 6 m 0 m 90 Jy

y

W cxy i dj dx cxyi dj dy

cx y dx d dy d y

d y

=

=

=

= + ⋅ + + ⋅

⎛ ⎞
= + =⎜ ⎟

⎝ ⎠

= = − =

∫ ∫

∫ ∫

 

(b) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

0
6m 3 m

00 0

6m 3 m

0 0

3 m2
6 m 2 22
0

0

ˆ ˆ ˆ ˆ

15 N 6 m 0 m 5 N/m 6 m 3 m 0 m 360 J
2

f

f

f

W c x yi dj dy cxy i dj dx

d dy cxy dx

cx y
d y

=⎛ ⎞
= + ⋅ + + ⋅⎜ ⎟

⎝ ⎠

= +

⎡ ⎤= + = − + − =⎣ ⎦

∫ ∫

∫ ∫

 

ASSESS The answers vary because the force given is a non-conservative force. There will be more on these in the 
next chapter. 

 81. INTERPRET A mass falls a given distance, and we are asked to find the force necessary to stop the mass within a 

another given distance. From the work-energy theorem (Equation 6.14, ΔK = Wnet), we see that the work done by 

gravity on the way down is equal in magnitude to the work done by the stopping force, because there is no change 

in kinetic energy between the initial (leg on bed) and final (leg on floor) state. 

DEVELOP The height dropped is h = 0.7 m and the stopping distance is s = 0.02 m. The mass of the leg is m = 8 

kg. From the work-energy theorem, we know that |Wdown| = |Wstop|. The work done by gravity is Wdown = mgh, and the 

absolute value of the work done by the stopping force is |Wstop| = Fss, where Fs is the stopping force. 

EVALUATE From the work-energy theorem, we have 

down stop

s

s

W W

mgh F s
hF mg
s

=

=

=

 

The value h/s = (0.7 m)/(0.02 m) = 35, so the average stopping force is 35 times the weight of the leg. 

ASSESS The shorter the distance over which something is stopped, the greater the force required. This is why cars 

are built to “crumple” on impact: The increased distance traveled by the passengers during the crash means a lower 

average force on their bodies. 

 82. INTERPRET We're asked to analyze a graph of the power a bat imparts on a ball as a function of time. 

DEVELOP The power, by definition is the rate at which the bat supplies energy to the ball.  

EVALUATE The peak in the power is where the bat is delivering energy to the ball at the greatest rate. 

The answer is (c). 

ASSESS We can check that the other answers are incorrect. The power from the bat does work on the ball 

according to Equation 6.18: .W Pdt= ∫  This work increases the kinetic energy of the ball, and thereby increases 
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its speed. After the peak, there is still more work being done on the ball. Therefore, the work, the kinetic energy 

and the speed do not reach their maxima at the peak – they will keep increasing until the power goes to zero.  

 83. INTERPRET We're asked to analyze a graph of the power a bat imparts on a ball as a function of time. 

DEVELOP As argued in the previous problem, the speed continues to increase as long as the power is non-zero.  

EVALUATE The speed will reach its maximum at the end of the hit, which occurs around 0.185 s on the graph.  

The answer is (c). 

ASSESS If we neglect wind resistance during the hit, the only horizontal force on the ball is the force from the bat. 

Consequently, there is nothing to slow the ball down while the bat and ball are in contact. It would be illogical, 

therefore, for the maximum speed to occur before the bat's force was finished acting on the ball.  

 84. INTERPRET We're asked to analyze a graph of the power a bat imparts on a ball as a function of time. 

DEVELOP The change in the kinetic energy is equal to the work done by the bat: .K W PdtΔ = = ∫  We can 

estimate this integral by roughly determining the area under the curve in the graph.  
EVALUATE Each square in the grid has an area of  

 1 kW 0.01 s 10 JWΔ = ⋅ =  

There are roughly 55 squares under the curve in the graph, so the total work done is 550 J,  which is also the 

increase in the kinetic energy. 

The answer is (a). 

ASSESS Does this make sense? Suppose the batter hits a 90 mi/h fastball. Given that a baseball has a mass of 

around 140 g, the initial kinetic energy of the ball is about 110 J. The ball is initially moving in the opposite 

direction of the bat, so the bat will have to do 110 J of work to bring the ball to rest. That leaves 440 J to propel the 

ball from rest to a final velocity of  

 ( )
( )f

2 440 J
79 m/s 180 mi/h

0.14 kg
v = = =  

If we assume the ball leaves the bat at a o45 with the horizontal, then the range of the ball (Equation 3.15) is: 
2
f / 640 m.x v g= =  This is unreasonably far (outfield fences in typical ballparks are around 400 ft, or 120 m, 

from home plate), but we have neglected wind resistance. 

 85. INTERPRET We're asked to analyze a graph of the power a bat imparts on a ball as a function of time. 

DEVELOP We can assume that the force provided by the bat and the velocity of the ball are parallel. Therefore, 

the bat force is given by: / .F P v=  The power is maximum at the peak in the graph, pk ,P whereas the velocity 

constantly increases while the ball and bat are in contact (recall Problem 6.83).  

EVALUATE We can rule out answer (a), since the power is zero there, which implies the force is too. Near the 

peak, the power is not changing much (the derivative with respect to time is zero at the maximum). Therefore, at a 

point slightly before the peak, the power is essentially the same, but the velocity is smaller by some amount we 

will call .vΔ  The force at a point before the peak can be approximated as: 

 pk pkbefore
before pk

before pk pk pk

1
P PP vF F

v v v v v
⎛ ⎞Δ

= ≈ ≈ + >⎜ ⎟− Δ ⎝ ⎠
 

where we have used the binomial approximation from Appendix A: ( ) 11 1x x−− ≈ +  for 1.x  By a similar 

argument, after pk ,F F<  so the force is greatest just before the peak. 

The answer is (c). 

ASSESS One might question the reasoning above. If the velocity were changing more slowly than the power near 

the peak, then the force would be maximum at the peak, not before. However, we can show that this leads to a 

contradiction. The derivative of the force with respect to time is zero when the force is maximum: 
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 2

1 0dF d P dP P dv
dt dt v v dt dtv

⎡ ⎤= = − =⎢ ⎥⎣ ⎦
 

Assuming the maximum force occurs at the peak, then the derivative of the power would also be zero 

( )/ 0dP dt = , since the peak is a maximum of the power as well. The equation above reduces to / 0,dv dt =  

which implies zero acceleration, zero force. But that contradicts the assumption that the peak is a maximum of the 

force. In conclusion, the maximum force has to occur before the peak. 




